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Abstract 14 

 15 

There is a paucity of age data for chondrichthyan fishes due, in large part, to limitations in 16 

traditional age estimation methods. Fourier transform near infrared (FT-NIR) spectroscopy has 17 

shown promise as an alternative, more efficient method for acquiring age data from 18 

chondrichthyans. However, studies are limited to sharks in the Southern Hemisphere. We explored 19 

FT-NIR spectroscopy to predict age for a batoid species in the Northern Hemisphere. The longnose 20 

skate (Raja rhina) is one of a small number of batoids for which annual band periodicity in 21 

vertebral centra has been validated, allowing for traditional age estimation and making it an ideal 22 

candidate for this study. We fit a multivariate partial least squares predictive model between FT-23 

NIR spectra collected from vertebral centra and traditional age estimates, and tested model 24 

predictive skill using external validation. Using FT-NIR spectroscopy, we were able to predict age 25 

for longnose skates between the ages of 1 and 14 years with near equal precision and bias as 26 

traditional methods in less than a quarter of the time. These results support potential for FT-NIR 27 

spectroscopy to increase the amount of age data available for assessments used to inform the 28 

conservation and management of this sensitive group of species.  29 
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1. Introduction 30 

  31 

 Information on the age of fishes is an essential component of fisheries research and 32 

management. Accurate age data allow for a more robust understanding of population dynamics 33 

and contribute to our ability to conserve and manage species effectively (Lai and Gunderson 1987; 34 

Campana 2001). Fish age data are essential for age-structured methods of stock assessment as they 35 

are used to estimate the size of population cohorts as well as important life-history parameters 36 

related to growth, mortality, maturity, and longevity. Because these metrics vary over time, 37 

monitoring temporal changes in their values is increasingly recognized as an important component 38 

of population assessment. Fish growth can be altered by factors such as ecological and 39 

environmental conditions (Shelton and Mangel 2012), fishing mortality (Heino and Dieckmann 40 

2008), and density-dependent effects (Lorenzen and Enberg 2001). For example, changes in 41 

temperature have been shown to affect fish growth (Matta et al. 2010; Pistevos et al. 2015; Matta 42 

et al. 2018), increased mortality can reduce population density leading to increased food 43 

availability and faster growth (Heino and Dieckmann 2008), and mortality that is size-selective 44 

toward older and larger individuals can favor genotypes that grow faster (Stokes and Law 2000).  45 

 Despite its importance, monitoring population parameters that rely on age data is 46 

challenging because of the time and expense involved, as well as the difficulties with producing 47 

reliable age estimates for some vulnerable species such as chondrichthyans. Historically there has 48 

not been a large research focus on chondrichthyan species because they have not supported as 49 

many economically valuable fisheries as teleost fishes (Fowler et al. 2005; Dulvy et al. 2014). 50 

Additionally, acquiring information on the age of chondrichthyans is especially difficult because 51 

they do not possess otoliths, which are commonly used for age estimation of teleost fishes (Cailliet 52 
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et al. 2006; Matta et al. 2017). Growth band patterns visible in thin sections of vertebral centra are 53 

often used for ageing chondrichthyans, but this method is time consuming and has not been 54 

validated for many species (Matta et al. 2017). Furthermore, a growing number of studies have 55 

demonstrated that these banding patterns may not form annually throughout life in all species, 56 

raising doubts about the accuracy of age estimates generated from vertebral centra (Natanson et 57 

al. 2018). Validation across species and age groups using independent methods of age 58 

determination is important to ensure that the age-estimation protocol yields biologically accurate 59 

age estimates. Consequently, age information is generally lacking for chondrichthyan populations 60 

(Cailliet et al. 2006; Matta et al. 2017) even though many species face elevated risk of extinction 61 

due to the expansion of fishing, habitat loss, and climate change (Dulvy et al. 2014).  62 

 The longnose skate (Raja rhina) is one of a few species of chondrichthyan for which age 63 

estimation methods have been validated (King et al. 2017). However, traditional growth-band age 64 

estimation is expensive and time consuming for this species, which has precluded routine age 65 

estimation. Life history traits such as late age-at-maturity relative to total lifespan and probable 66 

low fecundity may make this species more sensitive to exploitation (King and McFarlane 2003), 67 

yet a high percentage of bycatch is retained in some areas and there has been interest by industry 68 

in developing a target fishery (Farrugia 2017). Thus, more age data would be beneficial to monitor 69 

population status with higher spatial and temporal resolution.  70 

 Fourier transform near infrared (FT-NIR) spectroscopy is a technology that could be used 71 

to improve the efficiency of longnose skate age estimation and enable the enhanced collection of 72 

age data for this species. Routinely used in pharmaceutical and agricultural industries to analyze 73 

chemical composition (McClure et al. 2002; Roggo et al. 2007), FT-NIR measures the interaction 74 

of near-infrared light with the chemistry of biological materials such that unique molecular 75 
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structures result in a measure of absorbance across a range of wavenumbers from 12,000 to 4,000 76 

cm-1 (Robins et al. 2015). It is being increasingly utilized in ecological research including for 77 

species identification, physiological status, sex, detection of disease, and diet composition (Vance 78 

et al. 2016). In the field of fish ageing, FT-NIR is an emerging technology that has been used to 79 

more efficiently estimate ages of teleost fish using otoliths and of sharks using vertebrae, fin 80 

spines, and fin clips (Rigby et al. 2014; Wedding et al. 2014; Robins et al. 2015; Rigby et al. 2016; 81 

Helser et al. 2018; Passerotti et al. 2020a; Passerotti et al. 2020b, Wright et al. 2021). The ability 82 

to predict animal age using FT-NIR spectroscopy is based on the concept that there is a relationship 83 

between an ageing structure’s chemical composition and the specimen’s age. While this 84 

technology has shown promise for estimating chondrichthyan ages, it has not yet been applied to 85 

vertebrae in the northern hemisphere or from batoids. 86 

 Because ages estimated based on annual band periodicity have been validated for longnose 87 

skates (King et al. 2017), we were presented a unique opportunity to evaluate the use of FT-NIR 88 

spectroscopy to estimate ages from the vertebral centra of a batoid species in the northeastern 89 

Pacific Ocean. The objective of this study is to evaluate the utility of FT-NIR spectroscopy to 90 

estimate longnose skate age and compare results relative to traditional methods. 91 

 92 

2. Materials and methods 93 

 94 

 The longnose skate vertebral centra used in this study were provided by the National 95 

Marine Fisheries Service (NMFS) Northwest Fisheries Science Center’s (NWFSC) bottom trawl 96 

research surveys (Keller et al. 2017). A segment of thoracic vertebrae was collected from 97 

specimens and frozen at sea following approved NMFS procedures and guidance from the NMFS 98 
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Animal Care and Use Policy (Policy Directive 04-112). Collections occurred during 2011-2012 99 

along the U.S. West Coast between May and October. These samples were processed for a separate 100 

study on regional variability in the age and growth of longnose skates and more details and sample 101 

collection locations are fully described in Arrington (2020). A group of three to four adjacent 102 

thoracic vertebrae were dissected out of the frozen vertebral column in the laboratory, neural and 103 

hemal arches were removed, and centra were stored in ethanol for preservation (Cailliet and 104 

Goldman 2004). One centrum per specimen was used for age estimation and another one was used 105 

for spectroscopic evaluation in this study. Age readers estimated ages by counting annually 106 

deposited growth bands on vertebral thin sections according to the validated protocol (Gburski et 107 

al. 2007; King et al. 2017). Hereinafter, we refer to reader-generated age estimates as “traditional 108 

ages”, while “predicted ages” represent the ages estimated using the calibration model in the FT-109 

NIR spectroscopy approach. The primary reader (Reader 1) aged all specimens. Then, to evaluate 110 

ageing error, two additional readers independently aged a random subset of vertebral thin sections. 111 

We only evaluated a single vertebra per individual to maximize the number of individuals, but 112 

future studies might explore variation in growth across vertebrae within individuals. Traditional 113 

age estimates from the full longnose skate dataset ranged from 0 to 19 years (Arrington 2020). For 114 

the purpose of the present study, we truncated the dataset at 14 years due to poor representation of 115 

the older age classes (fewer than 5 samples per age class), which could have a disproportionately 116 

large influence on the predictive model.  117 

 To collect FT-NIR spectral absorbance data (hereinafter called spectral data), we placed 118 

one whole centrum per specimen under a fume hood and allowed it to air-dry for 48 hours so that 119 

ethanol could fully evaporate. We then placed each centrum on the sampling window of a Bruker 120 

TANGO-R Fourier transform near infrared spectrometer (Bruker Optics, Ettlingen, Germany) in 121 
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a standardized orientation with centrum cone side down and covered it with a reflector cap. 122 

Spectral data were acquired at 16 cm-1 resolution with 64 co-added scans. We collected spectral 123 

data from 633 vertebrae (Fig. 1a).  124 

 Partial Least Squares (PLS) regression analysis was used to build a predictive model for 125 

longnose skate age based on spectral data of whole centra. A PLS regression is a multivariate 126 

regression method commonly used for chemometric analysis (Wold et al. 1984). In PLS, the 127 

independent (here, spectral data) and dependent (here, Reader 1’s traditional age estimate) data 128 

matrices are decomposed into a set of scores and loadings. Loadings are determined by maximizing 129 

the correlation between scores based on least squares. We conducted data analysis in R statistical 130 

computing software version 3.6.3 (R Core Team 2020), with chemometric packages mdatools 131 

(Kucheryavskiy 2020) and simplerspec (Baumann 2020).  132 

 Raw spectral data often need to be transformed to enhance variation between specimens 133 

and remove unwanted noise before modeling (Rinnan et al. 2009). First, we estimated the first 134 

derivative of the spectral data to enhance separation between spectra while reducing any baseline 135 

drift in the data (Brown et al. 2000).  We calculated the first derivative using a polynomial least 136 

squares estimation known as the Savitzky-Golay first derivative (17-point smooth, polynomial 137 

order = 1; Savitzky and Golay 1964). The Savitzky-Golay approach is commonly used in 138 

spectroscopy due to desirable properties such as reducing unwanted noise in spectral data while 139 

preserving the chemical signal of interest. After calculating the first derivative, we mean centered 140 

the data (Fig. 1b). We then split the data into a set used to calibrate the model and a set to externally 141 

validate it. These sets were selected so that the validation set contained all specimens that each had 142 

three independent traditional age estimates. This allowed us to directly compare ageing error 143 

between the FT-NIR spectroscopy approach and the traditional method. The calibration set 144 
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contained 413 samples and the validation set contained 220 samples (Fig. 2). We applied PLS to 145 

the pre-processed spectral data from the calibration set and Reader 1’s corresponding traditional 146 

age estimates using a 10-fold venetian blind cross validation. This is a version of k-fold cross 147 

validation in which each fold is constructed from samples in the dataset in the 1 through 10 position 148 

until all data have been sorted. Each fold is systematically left out and a PLS regression is applied 149 

to the remaining samples. The parameter estimates are then used to estimate the age of the left-out 150 

fold and the mean error of all predictions versus Reader 1’s estimated ages can be calculated as 151 

the root mean square error of cross validation (RMSECV). This is an estimate of the predictive 152 

ability of the model on new data. We then applied this model to the validation data set and 153 

calculated a root mean square error of prediction (RMSEP) between predicted and Reader 1’s 154 

traditional age estimates to measure the true predictive ability of the model on an external data set. 155 

We also report percentage root mean square error (% RMSE) = (RMSECV/maximum age × 100) 156 

to estimate the average predictive ability of the PLS model within the range of the age data 157 

(Couture et al. 2016; Passerotti et al. 2020a). This metric also provides a standardized measure of 158 

error that can be compared across studies (Passerotti et al. 2020a).  159 

 Lastly, we assessed age estimation error in the FT-NIR spectroscopy approach compared 160 

to the traditional method. There are two types of error associated with traditional age and growth 161 

studies: process error and observation error. Process error occurs when growth zones in the ageing 162 

structure do not reflect true age. We did not address process error in this study. However, King et 163 

al. (2017) suggest annual band periodicity in the vertebrae of longnose skates. Observation error 164 

is due to interpretation of the ageing structure and can be evaluated by comparing age estimates 165 

among multiple age readers. In the FT-NIR approach, we considered observation error to be error 166 

between FT-NIR predicted age and Reader 1’s traditional age estimates.. This definition of 167 
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observation error is based on the simplifying assumption that there is no process error in FT-NIR 168 

measurements that would result in different age estimates for the same specimens, though this has 169 

yet to be evaluated or quantified for this species. To evaluate the precision of each method, we 170 

compared the coefficient of variation (CV) between Reader 1’s traditional age estimates and the 171 

FT-NIR predicted ages to the CV among the three age reader estimates (Chang 1982). McBride 172 

(2015) found that CV tracks precision better than other commonly used measures, such as average 173 

percent agreement (APE).  We evaluated relative bias among traditional methods and the FT-NIR 174 

approach visually using age bias plots and Bowker’s test of symmetry (Hoenig et al. 1995; 175 

McBride 2015). Since the PLS regression returns fractional age estimates, we first had to round 176 

predictions to the nearest whole number (i.e. 2.45 years = 2 years) so that precision and relative 177 

bias could be compared between the two methods. We evaluated current levels of observation error 178 

based on precision and relative bias among traditional age estimates to compare to the performance 179 

of the FT-NIR approach and to evaluate the utility of this approach for generating age estimates 180 

for longnose skates.  181 

 182 

3. Results 183 

 184 

 The FT-NIR spectra of longnose skate vertebral centra correlated with Reader 1’s 185 

traditionally estimated age with a coefficient of determination (R2) of 0.86, a RMSECV of 1.38 186 

years, and a %RMSE of 9.87% (Fig. 3). The RMSECV of 1.38 years indicates that 67% of the 187 

predicted ages from cross-validation fell within 1.38 years of the traditionally estimated age. When 188 

the model was applied to the external validation set and predictions compared to Reader 1’s 189 

traditional age estimates, RMSEP was 1.32 years (Fig. 3).  190 



RAPID AGE ESTIMATION OF LONGNOSE SKATE VERTEBRAE 

10 
 

 The FT-NIR approach predicted longnose skate ages between 1 and 14 years in the external 191 

validation set with as much precision as the traditional method but with a slight increase in bias 192 

for individuals at either end of the age range. Specimens with Reader 1’s traditional age estimate 193 

of 0 years were imprecisely estimated by the PLS regression (Fig. 3). When age-0 specimens were 194 

included, the traditional method had a CV of 22.6% among the three age readers and no systematic 195 

disagreement between Reader 1 and 2 (Bowker’s χ2 = 32.10, d.f. = 29 , P = 0.315) or Reader 1 and 196 

3 (Bowker’s χ2 = 46.91, d.f. = 40, P = 0.210). Precision was lower between the FT-NIR predictions 197 

and the Reader 1’s traditional age estimates with a CV of 34.2% and the null hypothesis of no 198 

systematic disagreement between methods was rejected (Bowker’s χ2 = 61.06, d.f. = 37, P = 0.008). 199 

When specimens with Reader 1’s traditional age estimate of 0 were removed, the precision 200 

between FT-NIR predictions and Reader 1’s traditional age estimates (CV of 19.6%) was 201 

comparable to that among readers (CV of 19.1%) and Bowker’s test of symmetry indicated no 202 

systematic disagreement between methods (Bowker’s χ2 = 42.86, d.f. = 35, P = 0.170). We visually 203 

observed a slight bias in FT-NIR predictions, with a tendency to over-estimate the age of younger 204 

skates (< 2 years) and under-estimate the age of older skates (> 13 years) relative to the three age 205 

reader estimates (Fig. 4).  When the magnitude of discrepancies in age estimates was compared 206 

between traditional and FT-NIR spectroscopy methods, we found that the percentage of samples 207 

with complete agreement (discrepancy of 0 years) was slightly higher among age readers using 208 

traditional methods (41.5–45.1% agreement) than between Reader 1’s estimates and FT-NIR 209 

predictions (33.0% agreement), but otherwise had a similar distribution (Fig. 5).  210 

 211 

4. Discussion 212 

 213 
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 The results of this study suggest that FT-NIR spectra of longnose skate centra can be used 214 

to estimate skate ages, similar to results published for other chondrichthyan species (Rigby et al. 215 

2014; Rigby et al. 2016). When applied to an external validation set, the FT-NIR spectroscopy 216 

method produced age predictions with comparable precision to traditional methods for longnose 217 

skates between the ages of 1 and 14 years (the full age range in this study was 0-14). Since the 218 

traditional method has been shown to produce biologically accurate age estimates (King et al. 219 

2017), these findings support the validity of using FT-NIR predicted ages in age-based assessments 220 

of longnose skates. Additionally, this method provides considerable efficiency gains -- a scan takes 221 

just one minute and requires minimal preparation of the sample. Traditional methods for longnose 222 

skate age determination require extensive preparation and take between 15 and 30 minutes per 223 

sample. Estimates can also be biased among age readers, especially among different agencies 224 

(King et al. 2017). FT-NIR spectroscopy may allow age estimation to be standardized among age 225 

readers and agencies due to its reproducibility. This technology has the potential to improve the 226 

frequency, quantity, and reproducibility of longnose skate age data for use in stock assessments 227 

and management.  228 

 This study marks the first known application of this technology to a batoid and results were 229 

comparable to those found by Rigby et al. (2014, 2016) for shark vertebrae. For Sphyrna 230 

mokarran, Carcharhinus sorrah, and Squalus megalops, Rigby et al. (2014, 2016) developed 231 

calibration models that yielded R2 values between 0.78 and 0.89, RMSECV values of 1.23 to 2.48 232 

years, and uncertainty between 7 and 9% (%RMSE of 7.40 to 8.97). The FT-NIR spectroscopy 233 

analysis of longnose skate vertebrae in this study produced comparable calibration models with an 234 

R2 of 0.86, RMSECV of 1.38 years, and uncertainty of 9.87% (Fig. 3).  235 
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The biased age predictions we observed for age-0 longnose skates in the external validation 236 

relative to traditional methods could be due to the exceedingly small size of age-0 vertebrae (1.5 237 

mm). Passerotti et al. (2020b) hypothesized that excess stray light from the FT-NIR spectrometer 238 

might confound their results for otoliths of juvenile red snapper that were between 1.5 and 7.0 mm. 239 

They found better calibration models when using a Teflon aperture to constrain the field of light. 240 

Future work for longnose skates could include using an aperture that may improve the predictive 241 

ability of the FT-NIR spectroscopy approach for younger skates.  242 

 Except for age 0 skates, the FT-NIR spectroscopy approach yielded age predictions for the 243 

external validation set that had comparable precision to the traditional method currently used for 244 

production ageing. However, neither method was as precise as is typical for teleost age 245 

determination. Poor precision in age estimation is common for chondrichthyan species due to the 246 

difficulty of interpreting their ageing structures. Published CVs for chondrichthyan vertebrae are 247 

generally much higher (>10%) than those for teleost otoliths (~5%) (Campana 2001). The current 248 

study reports slightly poorer precision in the traditional method (CV = 19.1%) than prior ageing 249 

studies for longnose skates by Thompson (2006), Gburski et al. (2017), and King et al. (2017) that 250 

found CVs between 11.9% and 15.2%. However, this is likely due to the large number of young 251 

skates included in the current study. It is difficult to distinguish growth increments on longnose 252 

skate vertebrae under the age of 2 years and any disagreement within this age range is weighed 253 

more heavily in the calculation of the overall CV. For instance, when one reader assigns an age of 254 

0 and another assigns an age of 1 to a given individual, the disagreement dramatically inflates the 255 

CV. 256 

 The low precision of traditional age estimates in this study relative to teleosts is likely due 257 

to observation error. However, the equivalently low precision of FT-NIR predictions could be due 258 
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to several factors.  First, any observation error associated with the traditional age estimates used 259 

to calibrate the model could reduce the precision of age predictions. Second, some process error is 260 

likely present in vertebrae which could cause a difference in the visual versus spectral 261 

interpretation of the structure. Third, any natural variation in chemical composition of vertebrae 262 

may affect the spectral data collected using FT-NIR spectroscopy. This may be amplified because 263 

we were unable to standardize the exact position of the thoracic vertebral samples used for 264 

spectroscopy. Size of vertebrae is variable along the vertebral column, and it is possible that larger 265 

thoracic vertebrae could impart different FT-NIR spectra than smaller thoracic vertebrae within an 266 

individual. Finally, the calibration model did not contain as many older skates as young skates, 267 

which could affect its predicative capability in that age range. Ideally, calibration samples would 268 

have even representation from all age classes. Rigby et al. (2014) found that age predictions 269 

markedly improved when older age classes were better represented in the calibration model. 270 

An increasing number of studies show that vertebral banding patterns may not form 271 

annually throughout life in all species (Natanson et al. 2018). This finding raises doubts about the 272 

accuracy of age estimates from vertebral centra in general and suggests that process error may be 273 

common. However, Rigby et al. (2014) found FT-NIR to be a promising alternative method for 274 

estimating age from vertebrae even when no visible banding pattern is present. Rigby et al. (2016) 275 

also found that using known-age samples to build predictive models based on FT-NIR spectra had 276 

improved precision relative to using traditionally estimated ages with RMSECV of +/- less than a 277 

year (0.87 and 0.88 years). This demonstrates the potential for FT-NIR spectroscopy to estimate 278 

age despite process error if accurate ages are used to calibrate the model. These findings indicate 279 

that as the accuracy and representation of age estimates used to calibrate the model improve, we 280 

may be able to improve the precision of age predictions. Future work for longnose skates could 281 
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include using a more balanced dataset to fit the calibration model between spectra and age 282 

estimates, utilizing known-age specimens, and standardizing the position of centra along the 283 

vertebral column. This may help to resolve bias in younger and older ages and improve precision 284 

while also improving the accuracy of age estimates. 285 

The results of this study as well as those of Rigby et al. (2014, 2016) indicate that there is 286 

a correlation between age and the chemical composition of vertebrae. It is unknown what specific 287 

chemical compound(s) correlate with age in chondrichthyans, but it could be related to the quantity 288 

of calcified phosphate mineral, hydroxyapatite, in their cartilaginous vertebral centra, as 289 

mineralization occurs incrementally with age in many chondrichthyans (Cailliet 1990; Kerr and 290 

Campana 2014). Calcium hydroxyapatite is detectable in the NIR spectrum due to stretching and 291 

bending of OH bonds in surface hydroxyl groups when exposed to near infrared light (Elkabouss 292 

et al. 2004). Relative quantities of the unmineralized components of vertebrae may also contribute 293 

to the observed relationship between NIR spectra and age. The unmineralized components of 294 

chondrichthyan vertebrae include water, proteoglycan, and collagen fibers, which are also 295 

detectable in the NIR region between 5,400 and 3,800 cm-1 (Baykal et al. 2010). Future work is 296 

needed to determine the specific chemistry of chondrichthyan vertebrae related to age to better 297 

understand the mechanism driving the observed correlation between age and FT-NIR spectra. 298 

 The results of this study show promise for the use of FT-NIR spectroscopy to more rapidly 299 

and efficiently estimate ages for longnose skates. The FT-NIR approach provides considerable 300 

efficiencies over the labor-intensive traditional process of preparing vertebrae for age 301 

determination. This is important because it may allow for a larger quantity and higher frequency 302 

of age estimates to be generated for use in stock assessments to monitor the status of this species. 303 

Additionally, modern stock assessment software allows the inclusion of ageing error in population 304 
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models and the results of this study provide the basis for quantifying this error. The most recent 305 

assessment for longnose skate off the US West Coast included age-reading error matrices 306 

estimated using the approach of Punt et al. (2008) based on various models of the relationship 307 

between the CV of age-reading error and true age (Gertseva et al. 2019). This study also adds to a 308 

growing body of literature demonstrating the successful application of this technology to estimate 309 

age for chondrichthyan species. Fourier transform near infrared spectroscopy may provide a way 310 

to estimate age for other members of this sensitive group of fishes that previously had little to no 311 

age data available.   312 
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Figure 1. Fourier transform near infrared spectral absorbance data of all Longnose Skate 495 

vertebrae. Spectra were averaged by traditionally estimated age, represented in colors: (A) raw 496 

absorbance data and (B) pre-processed spectral data using a 1st derivative Savitzky-Golay 497 

transform (17-point smooth, polynomial order = 1) and mean centering. 498 
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Figure 2. Age-specific sample sizes for the calibration set (grey) overlapped by external 499 

validation set (green) used in the age estimation of longnose skate by Fourier transform near 500 

infrared (FT-NIR) spectroscopy. 501 
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Figure 3. Results of a partial least squares model fit between reader-estimated age (traditional 502 

age) and Fourier transform near infrared spectra (predicted age) of Longnose Skate vertebral 503 

centra. Age predictions relative to traditionally estimated ages shown for the cross-validation 504 

(black) and for the external validation set (green) for each specimen. The solid lines are the 505 

regression lines for the cross-validation (black) and external validation (green). The dashed line 506 

represents one-to-one agreement between prediction and traditional estimate. Transparency in 507 

point shading shows overlapping data points. 508 
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Figure 4. Bias plot comparing Reader 1’s traditional age estimates to: average age estimates of 509 

Reader 2 (light blue), Reader 3 (in dark blue) and Fourier transform near infrared (FT-NIR) 510 

predictions (green) for longnose skates. Standard error bars shown for age groups with multiple 511 

samples. Dashed line represents 1:1 agreement. Sample count for each age category are 512 

represented by grey bars. 513 



RAPID AGE ESTIMATION OF LONGNOSE SKATE VERTEBRAE 

29 
 

 

Figure 5. Comparing discrepancies in longnose skate (Raja rhina) age estimates for the validation 514 

set from Fourier transform near infrared spectroscopy (FT-NIRS) and three age readers using 515 

traditional methods. Discrepancies are shown as percentage of specimens with age estimate 516 

differences of 0 to 6 years. In grey: traditional age estimated by Reader 1 – 2 and Reader 1 - 3, 517 

and in green: Reader 1 – FT-NIR prediction. 518 
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